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Abstract

Functional connectivity (FC) matrices measure the regional interactions in the brain and have been widely used in

neurological brain disease classification. A brain network, also named as connectome, could form a graph structure

naturally, the nodes of which are brain regions and the edges are interregional connectivity. Thus, in this study, we

proposed novel graph convolutional networks (GCNs) to extract efficient disease-related features from FC matrices.

Considering the time-dependent nature of brain activity, we computed dynamic FC matrices with sliding windows and

implemented a graph convolution–based LSTM (long short–term memory) layer to process dynamic graphs. Moreover, the

demographics of patients were also used as additional outputs to guide the classification. In this paper, we proposed to

utilize the demographic information as extra outputs and to share parameters among three networks predicting subject

status, gender, and age, which serve as assistant tasks. We tested the performance of the proposed architecture in ADNI II

dataset to classify Alzheimer’s disease patients from normal controls. The classification accuracy, sensitivity, and

specificity reach 90.0%, 91.7%, and 88.6%, respectively, on ADNI II dataset.
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Introduction

Neurological diseases, such as Alzheimer’s disease (AD) and

major depression disease (MDD), cause abnormalities in brain

functioning and affects patients’ daily lives. Functional MRI,

which evaluates brain activity by measuring the blood oxygena-

tion level-dependent (BOLD) over time, is thus a perfect tool to

investigate possible brain functional changes inmany neurolog-

ical disorders. Considering the nature of functional integration

and segregation in the brain, researchers assess the correlations

among neuronal activities in order to analyze brain function.

Resting state functional MR images are first segmented into

several brain regions of interest (ROIs) according to a brain atlas,

and the correlation between each pair of brain ROIs could be

computed and summarized in a matrix, known as functional

connectivity matrix.

Note that unlike natural images that contain shape and

texture information, the spatial locality of the entries of FC

does not directly correspond to the locality of brain networks.
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Thus, a difficult but important challenge in FC analysis is to

extract efficient disease-related features. Reshaping FCs into

vectors of features (Plis et al. 2014; Sen et al. 2016) and then

sending it into off-the-shelf classifiers is a widely used opera-

tion. However, a vectorized FC will lose spatial information by

discarding the topological structure of the matrix. Other feature

extractionmethods include BrainNetCNN (Kawahara et al. 2017),

which proposed a cross-shape convolutional kernel to process

connectivity matrix, as well as matrix clustering (Rajpoot et al.

2015).

A brain network can be represented as a graph structure nat-

urally. It contains a set of brain regions of interest (ROIs), known

as nodes, and describes their connectivity, known as edges. In

the context of fMRI, the edges of brain functional graphs are

derived from the correlations between each pair of brain ROIs.

The nodes of brain functional graphs are the brain ROIs.

In brain network, graphical algorithms can be applied on

FC data without loss of information. Graph kernel, which mea-

sures the inherent information in the graph structure (Vish-

wanathan et al. 2010; Shervashidze et al. 2011), is extensively

used inmany graph-based algorithms.Recently, researchers also

applied graph kernel for neuro-imaging studies. For example,

Jie et al. (Jie et al. 2014) used a graph kernel–based approach to

measure directly the topological similarity between connectiv-

ity networks. However, the computational complexity of graph

kernel is intensive.

Graph convolution neural networks (GCNs) allow an imple-

mentation of neural networks on graph structures. Neuroimag-

ing pattern recognition applications include node classification

and graph classification. Node classification assigns a prede-

fined demographic graph for all subjects accompanied by a set

of features. In the work of Parisot (Parisot et al. 2018), the feature

of every individual, that is, every graph node, was a feature

vector extracted from images, while the edges were calculated

from the similarities between corresponding subjects. Graph

classification treats each individual as an independent graph.

For example, Ktena et al. (Ktena et al. 2018) proposed a Siamese

graph convolution network to learn the similarity between brain

networks.However, their works neglected the dynamic nature of

brain activity, which can possibly improve the performance of

classifiers.

Demographic information has been proved to be useful in

many clinical studies. Researchers have reported a gender dif-

ference on cognitive functioning in brain (Halpern 2012). Besides,

the incidence of many neurological diseases correlates with the

years of age (Braak and Braak 1997; Butwicka and Gmitrowicz

2010). Thus, gender and age information was used in many

neurological disease classification studies. However, in small

datasets, which is common in medical imaging scenario, we

argue that the status of subjects and demographic information

of subjects are not always strongly correlated because of sam-

pling preference. For example, a major guideline of collecting

data for diagnosis is to balance the demographic distribution in

both patient group and healthy control group, making gender

and age weakly correlates with diagnosis. In this case, involving

gender and age directly in the prediction model may not help

models to learn diagnosis better.

In our previous work presented at a conference (Xing et al.

2019), a novel graph convolution recurrent network for fMRI pat-

tern recognition was proposed. Graphs are defined with time-

varying edges, that is, the dynamic functional connections, and

fixed nodes, which are characterized by the structural infor-

mation retrieved from average fMRI. The proposed method can

improve diagnosis accuracy on fMRI through three aspects: 1) a

graph classification algorithm which is dedicated for functional

connectivity data; 2) an LSTM architecture that could further

extract temporal information relevant to diagnosis; and 3) mul-

titask settings that utilize demographic information as extra

outputs for guiding the extraction of effective features. Details

could be found in the following sections.

Materials and Method

We introduce below the proposed dynamic spectral GCNs with

assistant task training using dynamic functional connectivity

matrices, as in Figure 1. First, the dynamic connectivity matrices

based on correlations of BOLD signals from sliding windows are

defined as time-varying edges. Each node of the connectivity

graph reflects an anatomical ROI. The feature on each node

is defined by the volume of the corresponding ROI. Second,

after defining the graph structure, a spectral graph convolution–

based LSTM network is employed to extract information from

the dynamic connectivity graphs. Finally, we make use of the

demographic information as extra outputs, by adding two assis-

tant networks with similar structure but different parameters,

predicting gender and age. The feature maps from assistant

networks were then weighted and combined with feature maps

from the main network, guiding the parameter training and

finally optimizing the results.

Graph Construction

A graph G(V ,E) was defined by two matrices, that is, node fea-

ture matrix and adjacency matrix. Node feature matrix denoted

asX ∈ RM×N, whereM is the number of nodes in the graph and N

denotes the number of features, describes the property of every

node in the graph. Node feature matrix describes the unique

role of every node in the graph. Node feature matrix is required

for graph convolutional operations and can be used as a check

for graph isomorphism. If there are no node features provided,

node feature matrix could be simply defined by identity matrix,

where the numerical order of all nodes is binary encoded. Adja-

cency matrix A ∈ RM×M represents the graph structure in a

matrix form.

As we do not have predefined node features for brain ROIs

from fMRI data, we first choose the identity matrix as node

feature matrix. To further differentiate the brain regions, we

replaced the diagonal entry of identitymatrix by the correspond-

ing volume of each ROI. Thus, the feature matrix in our method

is then denoted as{X|X ∈ RM×M, xij =

{

vi, i = j

0, i 6= j
.

}

, where vi is

the brain volume of i-th ROI. Dynamic adjacency matrices are

computed by a sliding window over the entire time series and

can be represented as {At|At ∈ RM×M, t = 1, 2, . . . ,T}. Here T is the

overall time points of dynamic adjacency matrices.

By aforementioned method, we could thus define a dynamic

brain graph with static node features and dynamic connection

pattern.

Graph Convolution LSTM

Graph Convolution

Conventional CNN performs spatial convolution on 2D or 3D

images, which is reasonable because of the natural adjacent

properties of neighboring pixels/voxels. However, when the

input of neural network is a graph, such convolution operations
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Figure 1. The schematic representation of the proposed DS-GCN with assistant task training for disease diagnosis using fMRI data. The static features of each node

are defined by structural images (A1), and time-varying edges are defined by dynamic functional connectivity (A2). Dynamic graphs are then processed by diagnosis

network (B2) and two subnetworks (B1 and B3) for assistance.

should be designed specifically. In our study, we chose spectral

graph convolution (Defferrard et al. 2016; Kipf and Welling

2017), because of 1) the convenience of avoiding the matching

of spatial local neighborhoods for a node and 2) the complete

mathematical definition of spectral graph convolution. Consider

a graph adjacency matrixA, the normalized graph Laplacian of

A is

L = I − D− 1
2 AD− 1

2 . (1)

Here D = diag (
∑

j ai,j) is the degree matrix of A. The eigenvectors

Uof graph Laplacian form the Fourier bases of the graph. Thus,

the Fourier transform of feature maps is x̂ = UTx. Since the

convolution operation on spatial domain is the multiplication

on spectral domain, the graph convolution operation is defined

as

gθ
∗ x = U

((

UTgθ

)

⊙
(

UTx
))

, (2)

where gθ represents the learnable parameters of the graph con-

volutional kernel. In our study, we used Chebyshev polyno-

mial to approximate UTgθ . This approximation enables spectral

convolution to be spatial localized and decreases the learning

and computational complexity. Using Chebyshev polynomial,

equation (2) can be approximated as

gθ
∗ x =

∑K

j=0
θjTj

(

L̃
)

x. (3)

Here, Chebyshev polynomial is Tk(x) = 2xTk−1(x) − Tk−2(x) with

T0(x) = 1 and T1(x) = x. L̃ = 2
λmax

L − I is the scaled graph

Laplacian, λmax denotes the largest eigenvalue of L, and I is

the identity matrix. θj is one of the learnable parameters. And

this expression is K localized because the K-th polynomial of

the graph Laplacian only depends on maximum Kth nearest

neighbor of the central node. For brain networks, every brain

region densely connected with others, either weakly or strongly.

Thus, we only need to consider the situation where K = 1.

We further approximate λmax ≈ 2, and thus equation (3) is

simplified as

gθ
∗ x = θ0x + θ1 (L − I) x = θ0x − θ1D

− 1
2 AD− 1

2 x ≈ θ ′
(

D̃− 1
2 ÃD̃− 1

2

)

x,

(4)

with Ã = A + I andD̃ = diag (
∑

j ãi, j). With equation (4), for input

signal X ∈ RM×Fin , with Fin input features for N nodes and Fout
expected output features, we could define graph convolutional

filter as follow:

Z = D̃− 1
2 ÃD̃− 1

2 XΘ, (5)

where Θ ∈ RFin×Fout is a matrix of graph convolutional parame-

ters and Z ∈ RM×Fout is the output feature matrix.

GC-LSTM

Dynamic graphs require a recurrent structure to handle tem-

poral information. Recurrent structure is composed of a series

of identical components, known as hidden cells. The output of

each hidden cell is known as hidden representations. Hidden

cells are aligned one after the other. By receiving the hidden

representations learned in the last cell and outputting represen-

tations for following cell, dynamic graphs are processed in order.

Hidden representations from all hidden cells are then sent into

fully connected layers for the diagnosis result.

In our paper, LSTM (long short–term memory) network is

used, which could avoid the long-term dependency problem by

recording the cell state in every time step. By replacing matrix

multiplication in conventional LSTM with graph convolution,

we could obtain below mathematical formulas, which graph

convolutional LSTM follows:

Forget gate : ft = σf

(

ωxf
∗ xt + ωhf

∗ ht−1 + ωCf ⊙ Ct−1 + bf

)

Input gate : it = σi
(

ωxi
∗ xt + ωhi

∗ ht−1 + ωCi ⊙ Ct−1 + bi
)

Cell state : Ct = ft ⊙ Ct−1 + it ⊙ tanh
(

ωxc
∗ xt + ωhc

∗ ht−1 + bc
)

Output gate : ot = σo
(

ωxo
∗ xt + ωho

∗ ht−1 + ωCo ⊙ Ct + bo
)

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhaa292/5930854 by U

niv of Southern C
alifornia user on 26 O

ctober 2020



4 Cerebral Cortex, 2020, Vol. 00, No. 00

Figure 2. GC-LSTM hidden cell in detail. Each cell has two sources of input, the present (At andX) and the recent past (ht−1 andCt−1). Output sequence {ht|t = 1, 2, . . .T}

was then treated as feature maps for following layers.

Hidden state : ht = o ⊙ tanh (Ct) . (6)

Here, ∗ denotes the graph convolution operator. Forget gate

decides what information is going to be discarded from the cell

state, while input gate decides what new information to store.

Cell state is updated after forget gate and input gate, and output

gate calculates the output,which is then filtered by cell state and

send to next time step. Details of the GC-LSTM cell are shown in

Figure 2.

Assistant Task Training

Gender and age provide important demographic information for

disease prediction. Conventional deep learning classifiers added

gender and age as additional features into the last fully con-

nected layer. However, when adding demographic information

as input features, the status and demographic information of

subjects correlates in a statistical manner. For example, in ADNI

datasets, gender and age are balanced among all groups, which

makes these features correlate weakly with diagnosis label-

ing. In this situation, adding additional demographic features

may not improve the classification performance. In addition,

a balanced distribution in dataset does not imply a balanced

distribution in real life: gender and age do affect the incidence of

many neurological diseases (Hebert et al. 1995; Nebel et al. 2018).

Thus, we propose to use demographic information as extra out-

puts in our networks. This strategy could not only improve the

classification performance of weakly correlated demographic

features but also guide the parameter optimizing in diagnosis

task.

However, conventional multitask settings adopt a hard

representation-sharing manner, by which different tasks share

same parameters in beginning several convolutional layers of

the network. In fact, it is difficult to decide which layers to be

shared and which layers to be split among different tasks. Thus,

our networks learn a linear combination of feature maps from

different tasks to determine the shared representations by itself.

We adopted this architecture from cross stitch networks (Misra

et al. 2016), but our networks are task centralized, that is, only

the main network, diagnosis network, receives the weighted

combination of feature maps from assistant networks.

Considering the feature maps xlD from diagnosis network,

xlG from gender prediction network, and xlA from age prediction

network in layerl, the linear combination of these feature maps

are learnt and sent into next layer in diagnosis network

x̃D = αl
Dx

l
D + αl

Gx
l
G + αl

Ax
l
A. (7)

Here, αl is a learnable parameter in layerl, which determines

the contribution of demographic assistance. The loss for these

networks is the weighted combination of losses from three

tasks. For diagnosis and gender prediction, cross entropy loss

was used, while for age prediction, mean square error loss was

used.

L = ωDLD + ωGLG + ωALA. (8)

Experiments

We have compared the proposed method with a number of

state-of-the-art classification approaches to demonstrate the

improvements brought by graph convolution LSTM and assis-

tant task training.

Data

We evaluated the proposed method on public dataset ADNI

(http://adni.loni.usc.edu/) (Alzheimer’s Disease Neuroimaging

Initiative). Under a series of criteria (http://adni.loni.usc.edu/

wp-content/themes/freshnews-dev-v2/documents/clinical/A

DNI-2_Protocol.pdf), ADNI-2 dataset is split into 177 healthy

controls (HC), 191 early MCI (eMCI) patients, 158 late MCI (lMCI)

patients, and 115 AD patients with 1.5 T T1-weighted structural

images and functional images (subjects had their eyes open).

From ADNI-2 dataset, we randomly chose 329 for training, 138

for validating, and 174 for testing. The model that performs best

on validation dataset is chosen as the final model for testing.
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Figure 3. Demographic information of ADNI II dataset. The average age in training set is 73.6 years, average age in validating set is 73.7 years and 73.4 in testing set.

Figure 4. Preprocessing steps of structural and functional data. Preprocessions of T1 images include AC-PC correction, resampling, intensity correction, skull stripping,

and registration. Preprocessions of fMRI include slice time correction,motion correction, registration, spatial and temporal filtering, and nuisance covariates regression.

Data distributions of training, validating, and testing datasets

are shown in Figure 3.

Preprocessing

Preprocessions of both structural and functional images are

under a standard pipeline. The preprocessing steps of data is

shown in Figure 4. For structural images, we performed anterior

commissure (AC)—posterior commissure (PC) correction and

then resampled them into size 256× 256× 256 with a resolution

of1× 1× 1 mm3. Then, after intensity inhomogeneity correction

by N3 algorithm, structural images were skull stripped and

registered into MNI space. Functional images were first slice

time corrected by interpolation and motion corrected by a rigid

body transformation on volumes, where mutual information

was used as the cost function. Then, functional images were

rigidly registered to the corresponding T1MR images and further

aligned to MNI space using the warping parameters of T1 MR

to MNI space. Thus, functional images were demarcated into

116 ROIs by AAL (Automated Anatomical Labeling) template.

Spatial filtering was applied with a Gaussian kernel with 4-mm

FWHM (full width at half maximum). BOLD signals were then

temporally filtered using a band-pass filter between 0.01 and

0.1 Hz. Dynamic functional connectivity matrices were com-

puted by a sliding window after four nuisance covariates were

regressed out, including head motion parameters, global mean

signal, white matter signal, and cerebrospinal fluid (CSF) signal.

Fisher-Z transformation was applied on all FC matrices.

Ablation Study on Dynamic Graphs

In order to demonstrate the improvements brought by graph

convolution LSTM, we compared the proposed method with

several baseline models. We included 5 comparison methods

in total, which compared two types of inputs, static FCs and

dynamic FCs, as detailed below as well as shown in Figure 5. To

ensure a fair comparison, all methods were trained under super

parameters (i.e., learning rate, batch size, etc.), which could

optimize their performances on validation set. We employed

thesemethods on two different tasks: 1) HC versus AD, and 2)HC

versus eMCI.

Static FCs. 1) SVM: Static FCs and brain ROI volumes were

reshaped as vectors of features and were then put into SVM

with Gaussian kernel. It should be noted that only entries in

the upper triangle static FC matrices were used to reduce fea-

ture dimension. 2) CNN: Static FCs and node feature matrices

were treated as two channel images and put into VGG-16. 3)

GCN: Static graphs were constructed by static FCs and node

feature matrix and then put into a graph convolution network

with one graph convolution layer and three fully connected

layers.

Dynamic FCs. 4) LSTM: Dynamic FCs were reshaped as

a time series of features and then concatenated with static

vectorized node feature matrices at every time point. 5) DS-

GCN: No demographic information is used in this method.

Dynamic graphs were constructed from functional connectivity

matrices and structural information. The proposed network

has one GC-LSTM layer followed by three fully connected
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Figure 5. Schematic representations of all methods for ablation study. It should be noted that for every layer in our comparison, batch normalizations and ReLU

activations were contained.

Table 1 Detailed network architecture of DS-GCN

Layer Input size Output size

GC-LSTM 39 × 116 × 116 39 × 116 × 1

FL1 39 × 116 × 1 116 × 1

FL2 116 × 1 64 × 1

FL3 64 × 1 2 × 1

layers. The detailed network layer dimensions are shown

in Table 1.

Results. Classification results on ADNI II dataset are shown

in Tables 2 and 3. From the tables, one can observe that overall

graph-based networks performed better than no graph–based

methods. In addition, dynamic connectivity outperformed static

connectivity methods. The results indicate that dynamic con-

nectivity with graph-based neural networks could fully exploit

the information in fMRI connectivity analysis.

Ablation Study on Assistant Task Training

To demonstrate the efficacy of assistant task training, we

employed the strategy on several deep learning–based models,

including GCN, LSTM, and DS-GCN. The results can be seen in

Table 4.

We compared assistant task learning strategy with other

multitask settings. 1) Demographic input: In thismethod, demo-

graphic information, that is, gender and age, was used as extra

inputs in the last fully connected layer. 2) Hard parameter shar-

ing:We compared hard parameter sharing,where different tasks

share the same parameters in front layers of the network with

the proposed algorithm. Networks were split for three tasks at

the last fully connected layer. 3) Soft parameter sharing: Soft

parameter sharing is the proposedmethod and the featuremaps

from assistant networks were weighted and combined with

feature maps from main network.

When we compared different settings of our algorithm, the

performance by using assistant task training outperformed

Table 2 Classification results of different algorithms on ADNI II dataset. The classification task is to classify HC and AD

Inputs Methods Accuracy Sensitivity Specificity

Static FCs SVM (linear kernel) 68.8% 72.2% 65.9%

Spectral GCN 81.3% 88.9% 75.0%

CNN / / /

Dynamic FCs LSTM 78.8% 86.1% 72.7%

DS-GCN 83.8% 80.6% 86.4%
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Table 3 Classification results of different algorithms on ADNI II dataset. The classification task is to classify HC and eMCI

Inputs Methods Accuracy Sensitivity Specificity

Static FCs SVM (linear kernel) 60.0% 80.4% 38.6%

GCN 70.5% 76.4% 63.6%

CNN / / /

Dynamic FCs LSTM 67.3% 64.7% 70.5%

DS-GCN 71.6% 68.6% 75.0%

Table 4 Classification results under different settings on ADNI II dataset. The classification task is to classify HC and AD

Models Settings Accuracy Sensitivity Specificity

GCN Naive 81.3% 88.9% 75.0%

Extra input 80.0% 83.3% 77.3%

Hard parameter sharing 83.8% 83.3% 84.1%

Soft parameter sharing 83.8% 86.1% 81.2%

LSTM Naive 78.8% 86.1% 72.7%

Extra input 80.0% 80.6% 79.5%

Hard parameter sharing 81.3% 77.8% 84.1%

Soft parameter sharing 85.0% 80.6% 88.6%

DS-GCN Naive 83.8% 80.6% 86.4%

Extra input 86.3% 88.9% 84.1%

Hard parameter sharing 87.5% 91.7% 81.8%

Soft parameter sharing 90.0% 91.7% 88.6%

Table 5 Classification results of multilabel classification tasks. The classification task is to classify HC, eMCI, lMCI, and AD

Class Sensitivity (recall) Precision F1-score

HC 65.9% 60.4% 63.0%

eMCI 70.6% 65.4% 67.9%

lMCI 63.9% 52.3% 57.5%

AD 62.8% 100.0% 77.1%

Avg 65.8% 69.5% 67.6%

those without such a training strategy. Assistant task training

may help improve the performance of classification.

Multilabel Classification Tasks

Despite of binary classification tasks, we also tested the pro-

posed method under multilabel setting, as in Table 5. The out-

puts of the model are a 4-channel one-hot encoded labels rep-

resenting HC, eMCI, lMCI, and AD, respectively. Recall (sensi-

tivity), precision, and F1-score are the mostly used evaluation

metrics for multilabel classification tasks. Recall is the fraction

of the total amount of instances, which were correctly selected.

Precision is the fraction of correctly selected cases of one class

among all cases that were classified as this class. F1-score is the

harmonic means of recall and precision.

Discussion

To further demonstrate the improvements in our model and to

evaluate the assistant task training strategy, we compared the

computational cost of all methods for comparison, computed

the class activation map of our model, and plotted the contribu-

tion from assistant tasks during training. The proposed model

consumes less storage and operations than other methods and

located bilateral hippocampus, right precuneus, right frontal

middle cortex, and left precentral cortex as class activated brain

regions. Feature maps from gender and age prediction tasks

have shown increasing contributions to diagnosis task through

training.

Computational Cost

We compared the FLOPs (floating point operations) (Hunger

2005) and the physical size of aforementioned models. Compar-

ing to the baseline models without using demographic infor-

mation, the learnable parameters are tripled in our methods

with soft parameter sharing. Besides, to handle dynamic FC, we

implemented LSTM structure into our network, also causing a

considerable increase of parameter amount.

However, as shown in Table 6, even with three times larger

than baseline DS-GCN, the proposed method still consume less

storage and operations than state-of-the-art methods, such as

SVM, CNN, and LSTM. We attribute it to the computational

simplicity of GCN. Considering an adjacency matrixA116×116 and

a node feature matrixX116×116 and vectorizing both matrices

as input, SVM requires at least 6670 (upper triangle entries

in connectivity matrix)+116 (diagonal features) parameters to

assign a prediction. However, if we adopt graph convolution

as described in equation (5), the dimensionality of parameters

needed declines into 116×1. Graph convolution allows matrix
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Table 6 Parameter sizes of different models. For ADNI-2 dataset, T = 39

Methods Input resolution Size/kiB FLOPs/kMAC

SVM (linear kernel) 6786 × 1 × 1 18.4×102 13.2

GCN 116 × 116 × 1 64.4 22.2

CNN 116 × 116 × 2 12.2×103 14.5× 106

LSTM 13572 × 1 × T 52.5×105 9.3×104

DS-GCN 116 × 116 × T 39.5 21.0

DS-GCN with demographics 116 × 116 × T + 2 39.5 21.0

DS-GCN with multi-task 116 × 116 × T 41.1 21.1

DS-GCN with assistant task training 116 × 116 × T 121.7 72.1

Figure 6.A bar chart showing the average class activation value of all test subjects. Top 5 activated regions are shown in different colors. Left hippocampus is reported

as the most active region when our model diagnosis AD.

calculation on functional connectivity matrices and thus con-

siderably reduce the number of parameters. It is also worth not-

ing that in GCN model, we implemented two graph convolution

layers to ensure a stable and acceptable performance, making

GCN model more complex than DS-GCN.

Network Explainability

Despite of the superior performance of graph convolutional

models, the explainability of the model is also helpful, because

graph structures cannot be classified easily by human intuition.

Recently, an increasing number of researches have been

proposed to study the inner working of graph convolutional

networks (Baldassarre and Azizpour 2019; Pope et al. 2019).

Gradient-guided Class Activation Mapping (Grad-CAM) is

a widely used algorithm to interpret the decision-making

procedure of neural networks (Selvaraju et al. 2016). First, Grad-

CAM calculates the gradient of yc (probability for class c, in this

case, the probability for AD) with respect to the feature maps x1D
output from GC-LSTM layer. Then, the importance weight ωc,k of

the kth node in this feature map is then

ωc,k =
∂yc

∂x1
D,k

.

The class activation map M is the feature map x1D filtered by

importance weight:

Mc = ReLU(ωcx1D). Here, activation function ReLU makes heat

map focus on brain regions, which only play positive parts in

classification. The class activation value of all testing subjects is

averaged and shown in Figures 6 and 7.

Analysis on Assistant Task Training

Synthetic Experiment

To illustrate the effectiveness of assistant task learning,

we reproduced the result of a synthetic experiment from

(Caruana and Sa 1997). Here, we used two fully connected layer

with activation function to approximate(A + B)2. A andB are

uniformly chosen from range [−5, 5] and are encoded into 210

bins. Besides the binary codes ofA andB, another feature (A − B)2

is also provided. However, (A − B)2 weakly correlates with our

target (the correlation reaches zero if A andB are “random”

enough). This does not mean we should discard(A − B)2. By

using (A − B)2 as extra outputs, our simple network could easily

generate the best prediction performance by learning to model

subfeatures A andB. Figures 8 and 9 show the network design

and the result of this synthetic experiment.

Task Contribution

The numeric values of αs as well as the values of losses

during training are plotted in Figure 10. To present the stable
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Figure 7. The Alzheimer’s disease activation map shown on a smoothed MNI 152 template. This image is shown by BrainNetViewer (Xia et al. 2013).

Figure 8.Network design for synthetic experiment to illustrate the effectiveness of assistant task learning.The classificationmodel is composed of three fully connected

layers. Number of node here represents the dimension of features.

Figure 9. The result for synthetic experiments. Both (A − B)2 and (A + B)2 are

normalized. The mean squared error for prediction without (A − B)2 (naive) is

0.016. The mean squared error for prediction with (A − B)2 as an extra input is

0.036 and is 0.009 for prediction with (A − B)2 as an additional output.

contribution from different tasks, we compared the updating

values of alphas under different initializations. Experiment

results show that using the training part of ADNI dataset, from

which 43 subjects (20% of the training dataset) was selected for

validation. Training procedure in all experiments used Adam

(Kingma and Ba 2015) with initial learning rate10−3. For random

initialization, the cross entropy loss of diagnosis and gender

classification were between [0.6, 0.8], while the MSE loss of age

prediction were between [0.07, 0.08]. Thus, to weight the losses

from different tasks into the same scale, the weights of losses

were then ωD = ωG = 1, and ωA = 10. As seen in equation

(6), αD refers to the weight of the main tasks, αG refers to the

contribution from gender, and αA refers to the contribution

from age. These values reflect the influences of each factor

to the final classification performance.

The above results confirmed our hypothesis that the training

of gender classification and age prediction may help generate

stable and robust network feature maps for diagnosis task.

Alphas in the last convolutional layers did not change as dra-

matically as the first two layers, indicating a weaker correlation

among different tasks for deeper layers.

Conclusion

In this paper, we have proposed a model specially to deal with

dynamic functional connectivity. The novelty of this paper

can be shown in three aspects. First, we proposed a specially

designed graph construction algorithm,which could utilize both

functional and structural MR images; second, a spectral graph

convolution–based recurrent network is implemented to extract

both functional and spatial information; and last, our model

adopts a training strategy, which utilizes demographic features

as extra outputs, guiding the diagnosis network to train and

focus. Our work provides not only a new and efficient way to

analyze functional MR images but also a new perspective for

the usage of semantic features.

However, there were still some limitations in our study. First,

we used AAL atlas to demarcate the brain into 116 brain ROIs.

Although there exist several brain atlases, such as automatic

nonlinear imaging matching and anatomical labeling (ANIMAL)

(Collins and Evans 1999), and Talariach Daemon (TT) (Lancaster

et al. 2000), AAL atlas is most widely adopted in fMRI studies

and also chosen as default template in SPM software. However,
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Figure 10. Alpha values of different layers under different initializations. Assistant task training shown in the first row was initialized with αD = 1 andαG = αA = 0,

while in the second row was initialized withαD = αG = αA = 0.33. Figures of the third row show alpha values randomly initialized.

the choice of brain nodes could affect the result of functional

connectivity networks. In this work, we proposed graph LSTM,

which is a general method and could also be used in different

brain atlas settings. Second, we only used volume as our struc-

tural node features because it is easily obtained and the volume

is highly related with the onset of AD (Bartos et al. 2019; Zhao

et al. 2019). However, we do not test the algorithms with more

other structural features including cortex thickness and image

intensity.

Data Availability

The dataset used in this work (ADNII) is an open-source dataset

downloaded from http://adni.loni.usc.edu/.
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